Interrogation 2 - Algèbre linéaire et réduction

L. Tintinaglia

Cette interrogation contient **3 parties indépendantes**. Les questions doivent être traitées dans l'ordre. Si le candidat saute une question, il le signale sur sa copie.

Les questions 13 et 14 sont à traiter seulement si le reste a déjà été traité.

I) Réduction pratique et calcul matriciel

Dans cette partie, on considère la matrice de $\mathcal{M}_3(\mathbb{R}): A = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$

- 1. A est-elle inversible? Donner son inverse le cas échéant.
- 2. Donner les éléments propres de A. Montrer que A est diagonalisable.
- 3. Donner le rang et le detérminant de A.
- 4. On considère trois suites réelles $(u_n)_{n\geqslant 0}$, $(v_n)_{n\geqslant 0}$ et $(w_n)_{n\geqslant 0}$ vérifiant

$$\begin{cases} u_{n+1} &= -v_n \\ v_{n+1} &= -u_n + 2w_n \\ w_{n+1} &= u_n + v_n + w_n \end{cases}$$

A quelle condition sur (u_0, v_0, w_0) ces trois suites sont-elles convergentes?

II) Réduction et commutativité

Soit E un \mathbb{K} -espace vectoriel, avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

- 5. Codiagonalisation. Considérons $u, v \in \mathcal{L}(E)$, diagonalisables et qui commutent. Montrer que u et v sont codiagonalisables, c'est-à-dire qu'ils admettent une base commune de vecteurs propres.
- 6. Spectre du commuté. Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. On admet que $\mathrm{GL}_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$.
 - (a) Montrer que $\chi_{AB} = \chi_{BA}$.
 - (b) Comparer Sp(AB) et Sp(BA). Les matrices AB et BA sont-elles semblables? Discuter.
- 7. Décomposition de DUNFORD. Soit $u \in \mathcal{L}(E)$. Montrer qu'il existe $\delta \in \mathcal{L}(E)$ diagonalisable et $\nu \in \mathcal{L}(E)$ nilpotent tels que $u = \delta + \nu$ et $\delta \circ \nu = \nu \circ \delta$. On ne demande pas de montrer l'unicité.

- 8. Intersection de spectres. Considérons $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$, et $\varphi_{A,B} : \begin{cases} \mathcal{M}_n(\mathbb{R}) & \longrightarrow \mathcal{M}_n(\mathbb{R}) \\ M & \longmapsto AM MB \end{cases}$.
 - (a) On suppose que $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) = \emptyset$. Montrer que $\varphi_{A,B}$ est bijective. On pourra montrer en premier lieu que $\chi_A(B) \in \operatorname{GL}_n(\mathbb{R})$.
 - (b) On suppose que $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) \neq \emptyset$. Montrer que $\varphi_{A,B}$ n'est pas bijective.

III) Matrice de Vandermonde et matrices compagnons

Pour $(a_1, \ldots, a_n) \in \mathbb{C}^n$, on définit la matrice de VANDERMONDE :

$$V(a_1, \dots, a_n) = \begin{pmatrix} 1 & a_1 & \dots & a_1^{n-1} \\ 1 & a_2 & \dots & a_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & a_n & \dots & a_n^{n-1} \end{pmatrix} \in \mathcal{M}_n(\mathbb{C})$$

9. Déterminant. Montrer par la méthode de votre choix que :

$$\det(V(a_1,\ldots,a_n)) = \prod_{1 \le i < j \le n} (a_j - a_i)$$

10. Caractérisation des nilpotents. Montrer que la matrice $A \in \mathcal{M}_n(\mathbb{C})$ est nilpotente si et seulement si pour tout $k \in \mathbb{N}^*$, $\text{Tr}(A^k) = 0$.

Dans la suite, soit $P = X^n - \sum_{k=0}^{n-1} a_k X^k \in \mathbb{K}[X]$. On appelle matrice compagnon associée

- 11. Montrer que $\chi_{C_P} = P$.
- 12. On suppose uniquement dans cette question $P \in \mathbb{Z}[X]$. Soient $\lambda_1, \ldots, \lambda_n$ les racines complexes de P. Montrer que pour tout $k \in \mathbb{N}$, $\sum_{i=1}^{n} \lambda_j^k \in \mathbb{Z}$.
- 13. On suppose maintenant $\lambda_1, \ldots, \lambda_n$ distincts. Montrer que

$$V(\lambda_1, \dots, \lambda_n) C_P V(\lambda_1, \dots, \lambda_n)^{-1} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

- 14. Endomorphismes cycliques. Montrer que les propositions suivantes sont équivalentes:
 - \triangleleft A est sembable à une matrice compagnon;
 - $\lhd \pi_A = \chi_A$;